Minggu, 21 Februari 2016

TUGAS TERSTRUKTUR II

TUGAS TERSTRUTUR 

1.   Coba Anda cari sebuah reaktan yang gugus substituennya OH lalu basa apa yang digunakan agar reaksi eliminasi dapat terjadi kemudian bagaimana mekanisme reaksi yang terjadi serta tentukan  produk  manakah yang dapat dihasilkan dengan porsi lebih banyak ?
Jawab :
Alkohol pada umumnya mengalami reaksi eliminasi jika dipanaskan dengan katalis asam kuat, misalnya H2SO4 atau asam Fosfat (H3PO4) untuk menghasilkan alkena dan air.  Alkohol   seperti   alkil   halida   bereaksi   eliminasi   dan   menghasilkan   alkena.   Karena   air  dilepaskan dalam eliminasi ini, maka reaksi ini disebut reaksi dehidrasi. Gugus hidroksil bukan merupakan gugus pergi yang baik, akan tetapi di bawah kondisi asam, gugus hidroksil dapat diprotonasi. Ionisasi akan menghasilkan suatu molekul air dan kation , yang selanjutnya dapat mengalami deprotonasi untuk memberikan alkena. Dehidrasi alkohol sekunder dan tersier adalah reaksi eliminasi 1 yang melibatkan pembentukan karbokation, sedangkan dehidrasi alkohol primer adalah reaksi eliminasi 2. Suatu reaksi E2 terjadi pada satu tahap, yaitu tahap pertama asam akan memprotonasi oksigen dari alkohol, proton diambil oleh basa (H2SO4) dan secara simultan membentuk ikatan rangkap karbokation (C=C) melalui hilangnya molekul air.


8 Mekanisme dehidrasi
   Untuk alkohol sekunder dan tersier,dehidrasi mengikuti alur E1.Gugus hidroksil diprotonkan,sebuah karbokation terbentuk dengan lepasnya sebuah molekul air, dan kemudian sebuah proton dibuang untuk menghasilkan alkena.


8Dengan H2SO4pada suhu tinggi akan melepas air/H O (reaksi dehidrasi)   
  dengan dua jenis reaksi berdasarkan suhunya : 
1.      A. pada suhu 130 - 140 C akan menghasilkan eter

  B.  pada suhu 170 - 180 akan menghasilkan alkena


2.   Carilah sebuah reaksi yang bisa menghasilkan produk eliminasi dan substitusi !

Jawab : 


3. Tunjukkan dan gambarkan Konformasi yang paling stabil dan tidak stabil ?




Jawab :
     Bentuk staggered merupakan bentuk yang paling stabil karena gugus yang besar (gugus metil) letaknya saling berjauhan. Bentuk eclipsed adalah bentuk yang paling tidak stabil karena gugus metil terletak saling menutupi. Konformasi berimpit dimana gugus-gugus metil tereklipkan memiliki energi paling tinggi, disebut full eclips. Bentuk gauge memiliki kestabilan diantara bentuk staggered dan bentuk eclipsed.

Mekanisme nya :


Proyeksi Newman :











Sabtu, 20 Februari 2016

Tugas Mandiri "REAKSI ADISI"


R E A K S I     A D I S I



A.    Pengertian Reaksi Adisi
Reaksi adisi adalah reaksi penggabungan dua atau lebih molekul menjadi sebuah molekul yang lebih besar dengan disertai berkurangnya ikatan rangkap dari salah satu molekul yang bereaksi akibat adanya penggabungan. Biasanya satu molekul yang terlibat mempunyai ikatan rangkap. Reaksi ini hanya terjadi hidrokarbon tak jenuh (alkena dan alkuna). Contoh reaksi adisi adalah reaksi antara etena dengan gas klorin membentuk 1,2-dikloroetana.


Dalam reaksi adisi, molekul senyawa yang mempunyai ikatan rangkap menyerap atom atau gugus atom sehingga ikatan rangkap berubah menjadi ikatan tunggal. Alkena dan alkuna dapat mengalami reaksi adisi dengan hidrogen, halogen maupun asam halida (HX). Untuk alkena  atau alkuna, bila jumlah atom H pada kedua atom C ikatan rangkap berbeda, maka arah adisi ditentukan oleh kaidah Markovnikov, yaitu atom H akan terikat pada atom karbon yang lebih banyak atom H-nya (“yang kaya semakin kaya”).
Contoh :


Pada prinsipnya dalam reaksi ini terjadi pemutusan ikatan rangkap  dan ikatan yang terputus digantikan dengan mengikat atom atau gugus atom lain. dalam contoh di atas ikatan rangkap dua mengalami pemutusan kemudian digantikan dengan mengikat  -H dan -Cl dari HCl. cara pemilihan letak ikatan -H dan -Cl menggunakan aturan Markovnikov yakni "atom H akan terikat pada atom karbon yang lebih banyak H nya". pada contoh di atas atom C di sebelah kiri ikatan rangkap tidak mengikat H sedangkan atom C di sebelah kanan ikatan rangkap mengikat 1 atom H sehingga atom H dari HCl akan diikat oleh atom C di sebelah kanan ikatan rangkap dan Cl dari HCl akan diikat oleh aotm C di sebelah kirinya. aturan ini juga berlaku untuk reaksi adisi dengan senyawa lain selain HCl.

Reaksi adisi terjadi pada senyawa tak jenuh. Molekul tak jenuh dapat menerima tambahan    atau gugus dari suatu pereaksi. Dua contoh pereaksi yang mengadisi pada ikatan rangkap adalah brom dan hidrogen. Adisi brom biasanya merupakan reaksi cepat, dan sering dipakai sebagai uji kualitatif untuk mengidentifikasi ikatan rangkap dua atau rangkap tiga. 

A. Jenis – Jenis Reaksi Adisi
Reaksi adisi dibedakan atas (a) reaksi adisi elektrofilik dan (b) reaksi adisi nukleofilik.

1 1.  Reaksi Adisi Elektrofilik

Reaksi adisi elektrofilik terjadi apabila gugus yang pertama menyerang suatu ikatan rangkap pereaksi elektrofil. Reaksi adisi elektrofilik ditemukan pada senyawa C yang mengandung ikatan rangkap antara dua atom C seperti alkena dan alkuna. Contoh reaksi adisi elektrofilik adalah reaksi antara etena dengan asam klorida menghasilkan etil-klorida.


1  2.  Reaksi Adisi Nukleofilik

Reaksi adisi nukleofilik terjadi apabila gugus yang pertama kali menyerang suatu ikatan rangkap merupakan pereaksi nukleofil. Reaksi adisi nukleofilik ditemukan pada senyawa C yang mengandung ikatan rangkap antara dua atom C dengan atom lain, seperti senyawa yang mengandung gugus karbonil dan senyawa yang mempunyai gugus sianida. Contoh reaksi adisi nukleofilik adalar reaksi antara dimetil-keton dengan asam sianida menghasilkan 2-siano-2-propanol.



Adisi Elektrofilik HX pada Alkena

Dasar untuk memahami reaksi adisi ektrofilik HX (halida asam) pada alkena adalah: alkena dapat bertindak sebagai nukleofil dalam reaksi polar. Ikatan rangkap karbon-karbon kaya akan elektron dan dapat disumbangkan kepada spesies elektrofilik. Contohnya reaksi 2-metilpropena dengan HBr menghasilkan 2-bromo-2-metilpropana. Reaksi dimulai dengan serangan elektrofil (HBr) pada ikatan ฯ€. Dua elektron ฯ€ akan membentuk satu ikatan ฯƒ antara hidrogen dari HBr dengan karbon ikatan rangkap. Hasilnya adalah intermediet karbokation yang bersifat elektrofilik, sehingga dapat bereaksi dengan nukleofil dengan menerima pasangan elektron bebas dari nukleofil tersebut. Di sini yang bertindak sebagai nukleofil adalah Br- . Karbokation bereaksi dengan Br menghasilkan ikatan C-Br dan menghasilkan produk akhir reaksi adisi.

Diagram energi reaksi adisi elektrofilik memiliki dua puncak transition state yang dibatasi oleh pembentukan intermediet karbokation. Tingkat energi intermediet lebih tinggi dibandingkan tingkat energi alkena awal, tetapi keseluruhan reaksi adalah eksergonik (ฮ”G0 bernilai negatif). Tahap pertama, protonasi alkena menghasilkan intermediet kation, berjalan relatif lambat. Akan tetapi sekali terbentuk, karbokation tersebut dengan cepat bereaksi dengan nukleofil dan menghasilkan produk akhir reaksi adisi.


Seorang ahli kimia Rusia, Vladimir Markovnikov, pada tahun 1969 mengusulkan suatu aturan yang kemudian dikenal dengan aturan Markovnikov, yaitu: Pada reaksi adisi HX pada alkena, hidrogen menyerang karbon yang kurang tersubstitusi, sedangkan X menyerang karbon yang lebih tersubstitusi.


Ketika terdapat alkena di mana karbon-karbon yang memiliki ikatan rangkap mempunyai substituen dengan derajat yang sama maka terbentuk produk campuran.


Oleh karena karbokation terlibat sebagai intermediet dalam reaksi ini maka aturan Markovnikov dapat diulangi: Dalam reaksi adisi HX pada alkena, karbokation yang lebih tersubstitusi akan terbentuk sebagai intermediet dari pada yang karbokation yang kurang tersubstitusi.



Halida asam (HX) dapat juga mengadisi alkena dengan mekanisme yang mirip seperti di atas. Umumnya reaksinya menghasilkan produk adisi Markovnikov. Misalnya adisi HBr pada alkena, di mana Br akan mengadisi pada atom karbon yang lebih tersubstitusi (aturan Markovnikov). Akan tetapi jika terdapat O2 atau perksida (ROOR), adisi HBr berjalan dengan mekanisme radikal bebas, bukan dengan mekanisme ion. Reaksinya dinamai adisi non Markovnikov.


Stabilitas radikal bebas seperti halnya karbokation, berurutan sebagai: tersier > sekunder > primer. Pada contoh di atas, hasil adisi radikal bebas ialah 1-bromopropana bukan 2- bromopropana. Hidrogen klorida tidak menjalani adisi radikal bebas kepada alkena karena relatif lambatnya pemecahan homolisis HCl menjadi radikal bebas. Hidrogen iodida juga tidak menjalani reaksi ini karena adisi radikal I kepada alkena bersifat endoterm dan terlalu perlahan untuk mendukung reaksi berantai.

Permasalahan :
Mengapa reaksi adisi terjadi hanya pada senyawa tak jenuh ? Apakah bisa juga terjadi pada senyawa jenuh ? Tolong bantuannya teman-teman
Trimakasih J











Minggu, 14 Februari 2016

Tugas Mandiri : REAKSI ELIMINASI ALKIL HALIDA


REAKSI ELIMINASI ALKIL HALIDA

Reaksi Eliminasi adalah suatu reaksi dimana bagian suatu molekul lepass dari atom yang mengikatnya sehingga terbentuk ikatan rangkap.

 







      REAKSI ALKIL HALIDA
Alkil halida paling banyak ditemui sebagai zat antara dalam sintesis. Mereka dengan mudah diubah ke dalam berbagai jenis senyawa lain, dan dapat diperoleh melalui banyak cara. Reaksi alkil halida yang banyak itu dapat dikelompokkan dalam dua kelompok, yaitu reaksi substitusi dan reaksi eliminasi. Dalam reaksi substitusi, halogen (X) diganti dengan beberapa gugus lain (Z).



Reaksi eliminasi melibatkan pelepasan HX, dan hasilnya adalah suatu alkena. Banyak sekali modifikasi terhadap reaksi ini, tergantung pada pereaksi yang digunakan.







REAKSI ELIMINASI
            Reaksi eliminasi adalah suatu jenis reaksi organik dimana dua substituen dilepaskan dari sebuah molekul baik dalam satu atau dua langkah mekanisme. Reaksi satu langkah disebut dengan reaksi E2, sedangkan reaksi dua langkah disebut dengan reaksi E1. Simbol angka pada huruf E (yang berarti elimination) tidak melambangkan jumlah langkah. E2 dan E1 menyatakan kinetika reaksi yaitu berturut-turut bimolekuler dan unimolekuler.

            Pada sebagian besar reaksi eliminasi organik, minimal satu hidrogen dilepaskan membentuk ikatan rangka dua. Dengan kata lain akan terbentuk molekul tak jenuh. Hal tersebut memungkinkan bahwa sebuah molekul melangsungkan reaksi eliminasi reduktif, dimana valensi atom pada molekul menurun dua. Jenis reaksi eliminasi yang penting melibatkan alkil halida, dengan gugus pergi (leavig group) yang baik, bereaksi dengan basa lewis membentuk alkena. Contoh reaksi eliminasi :



            Reaksi eliminasi adalah kebalikan dari reaksi adisi. Ketika senyawa yang tereliminasi asimetris, maka regioselektivitas ditemukan oleh aturan Zaitsev.

Reaksi Eliminasi: Mekanisme E2 dan E1
Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.




Pada reaksi substitusi, nukleofil menggantikan halogen (lihat pers. 5.5). Pada reaksi eliminasi (pers. 5.6), halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan p) terbentuk di antara karbon karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.


Mekanisme reaksi E1
Mekanisme reaksi E1 merupakan alternatif dari mekanisme reaksi SN1. Karbokation dapat memberikan sebuah proton kepada suatu basa dalam reaksi eliminasi.
Mekanisme reaksi E1 terdiri dari dua tahap. Perhatikan contoh berikut ini.




Tahap 1 reaksi E1 berjalan lambat.

                                    



Tahap 2 reaksi E1 berjalan cepat.





Mekanisme reaksi E2
E2 merupakan reaksi eliminasi bimolekuler. Reaksi E2 hanya terjadi dari satu langkah atau hanya terjadi proses satu tahap dimana ikatan karbon-hidrogen dan karbon-halogen terputus membentuk ikatan rangkap C=C. Reaksi E2 dilangsungkan oleh alkil halida primer dan sekunder. Reaksi ini hampir sama dengan reaksi SN2. Reaksi E2 secara khusus menggunakan basa kuat untuk menarik hidrogen asam dengan kuat. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.




Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan p baru.

Reaksi E2 menggunakan basa kuat seperti OH, -OR, dan juga membutuhkan kalor, dengn memanaskan alkil halida dalam KOH atau CH3CH2ONa dalam etanol.





Permasalahan : Mengapa reaksi E2 secara khusus menggunakan basa kuat untuk menarik hidrogen asam? Mohon bantuannya bagi  Teman-teman semua

Kamis, 04 Februari 2016

REAKSI SUBSTITUSI NUKLEOFILIK


REAKSI SUBSTITUSI NUKLEOFILIK

*   PENGERTIAN REAKSI SUBSTITUSI
            Reaksi substitusi atau disebut reaksi pertukaran gugus fungsi terjadi saat atom atau gugus atom dari suatu senyawa karbon digantikan oleh atom atau gugus atom lain dari senyawa yang lain. Secara umum mekanismenya: 




          Atom karbon ujung suatu alkil halida mempunyai muatan positif parsial. Karbon ini bisa rentan terhadap (susceptible; mudah diserang oleh) serangan oleh anion dan spesi lain apa saja yang mempunyai sepasang elektron menyendiri (unshared) dalam kulit luarnya. Dalam suatu reaksi substitusi alkil halida, halida itu disebut gugus pergi (leaving group) suatu istilah yang berarti gugus apa saja yang dapat digeser dari ikatannya dengan suatu atom karbon. Ion Halida merupakan gugus pergi yang baik, karena ion-ion ini merupakan basa yang sangat lemah. Basa kuat seperti misalnya OH-, bukan gugus pergi yang baik. Spesi (spesies) yang menyerang suatu alkil halida dalam suatu reaksi substitusi disebut nukleofil (nucleophile, “pecinta nukleus”), sering dilambangkan dengan Nu-. Umumnya, sebuah nukleofil ialah spesi apa saja yang tertarik ke suatu pusat positif ; jadi sebuah nukleofil adalah suatu basa Lewis. Kebanyakan nukleofil adalah anion, namun beberapa molekul polar yang netral, seperti H2O, CH3OH dan CH3NH2 dapat juga bertindak sebagai nukleofil. Molekul netral ini memiliki pasangan elektron menyendiri, yang dapat digunakan untuk membentuk ikatan sigma. Lawan nukleofil ialah elektrofil (“pecinta elektron”) sering dilambangkan dengan E+. Suatu elektrofil ialah spesi apa saja yang tertarik ke suatu pusat negatif, jadi suatu elektrofil ialah suatu asam Lewis seperti H+ atau ZnCl2

* REAKSI SUBSTITUSI NUKLEOFILIK
            Reaksi Substitusi Nukleofilik Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikathalogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan: 



Contoh masing-masing reaksi adalah: 


A.  Mekanisme Reaksi SN1
   SN1 atau substitusi nukleofilik unimolekuler mudah dikenali karena memiliki dua tahapan reaksi. Tahap pertama merupakan tahap “perginya” (baca, putus/lepas) si gugus pergi dari suatu senyawa/molekul yang nantinya akan digantikan oleh gugus datang. Gugus yang pergi ini tidak sendiri, ia pergi dengan membawa pasangan elektron ikatan. Akibatnya senyawa/molekul yang ditinggalkan mengalami kekurangan elektron. Dengan kata lain senyawa mengalami ionisasi sehingga bermuatan positif dan memiliki hibridisasi sp3 berbentuk segitiga planar/datar. Senyawa yang telah bermuatan positif cenderung labil (mudah bereaksi) ketika berada dalam “mode” ini. Karena itu gugus datang akan dengan mudah masuk dan membentuk ikatan dengan suatu senyawa. Masuknya gugus datang dapat terjadi melalui dua arah yang berbeda, karnanya produk hasil reaksi SN1 akan berupa rasemat atau campuran enantiomer/senyawa sama namun letak gugus datang dalam ruang 3D-nya berbeda.


         Ada analogi menarik perihal SN1, fenomenanya mirip-mirip dengan pasutri yang harus melabuhkan kapal ditengah lautan, lalu berjalan berlawanan dengan damai karena tidak adanya dukungan keadaan (cerai/pisah/terionisasi maksudnya). Disinilah terbuka peluang bagi “calon-calon” gugus datang yang ingin mengisi kekosongan. Alhasil, mudah bagi si calon untuk mengisi “kursi” yang ditinggalkan sang mantan.
Pada mekanisme SN1 substitusi terjadi dua tahap. Lambang 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. tahap ini tidak melibatkan nukleofil sama sekali. dikatakan, bahwa tahap pertama bersifat unimolekuler.

Adapun cara mengetahui suatu nukleofil dan substrat bereaksi dengan mekanisme SN2 yaitu :

1.   Kecepatan reaksi tidak bergantung pada konsentrasi nukleofil. Tahap penentu kecepatan adalah tahap pertama nukleofil tidak terlibat. Setelah tahap ini terjadi, ion karbonium bereaksi dengan nukleofil.
2.      Jika karbon yang membawa gugus bebas bersifat kiral, reaksi mengakibatkan hilangnya aktivitas optic (yaitu, rasemisasi). Pada ion karbonium, hanya ada tiga gugus yang melekat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk datar.
3.     Jika substrat R-L bereaksi melalui mekanisme SN1, reaksi berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Reaksi SN1 berlangsung melalui ion karbonium, sehingga urutan kereaktifannya sama dengan urutan kemantapan ion karbonium. Reaksi bergantung lebih cepat jika ion karbonium lebih mudah terbentuk.
Jadi, reaksi substitusi nukleofilik terdiri dari dua jenis yaitu substitusi nukleofilik bimolekuler (Sn-2) dan substitusi nukleofilik unimo-lekuler (Sn-1). Reaktan yang lazim digunakan untuk reaksi substitusi nukleofilik adalah organo halida karena ion halogen (X") adalah mempakan nukleofil yang sangat lemah (gugus pergi) yang baik.
B. Mekanisme Reaksi SN2
            Berbeda dengan SN1, reaksi SN2 (bimolekular) melibatkan dua gugus sekaligus selama proses substitusi berlansung. Artinya reaksi akan sangat dipengaruhi oleh kekuatan masing-masing gugus baik gugus datang maupun gugus pergi. Jika gugus yang datang merupakan pendonor elektron yang lebih baik dari gugus yang akan pergi, maka reaksi substitusi akan berlansung dengan mudah, sebaliknya jika gugus pergi cenderung lebih baik dari gugus datang maka reaksi akan cenderung lambat bahkan tidak berlangsung sama sekali.
Jika produk SN1 berupa rasemat maka produk SN2 berupa produk inversi (terbalik) yang dikenal sebagai inversi Walden. 

*      Adapun ciri reaksi SN2 adalah: 
1.    Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka  
kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut. 
2.  Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan
(R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar
sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi. 
3.  Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R
merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier. 


B. Reaksi SN1 Mekanisme SN1 dalah proses dua tahap. Pada tahap pertama, ikatan  
     antarakarbon dengan gugus pergi putus. 



Gugus pergi terlepas dengan membawa pasangan elektron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk 



      Pada mekanisme SN1, substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil. Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1: 
1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat. 
2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik. 



X yang melalui mekanisme SN1 akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3o-Spesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan adalah campuran rasemik Reaksi substrat R > 2o >> 1o. 

C. Perbandingan Mekanisme SN1 dan SN
            Tabel berikut memuat ringkasan mengenai mekanisme substitusi dan mebandingkannya dengan keadaan-keadaan lain, seperti keadan pelarut dan struktur nukleofil. 
Tabel1: Perbandingan reaksi SN2 dengan SN
        Pada tahap pertama dalam mekanisme SN1 adalah tahap pembentukan ion, sehingga mekanisme ini dapat berlangsung lebih baik dalam pelarut polar. Jadi halida sekunder yang dapat bereaksi melalui kedua mekanisme tersebut, kita dapat mengubah mekanismenya dengan menyesuaikan kepolaran pelarutnya. Misalnya, mekanisme reaksi halida sekunder dengan air (membentuk alkohol) dapat diubah dari SN2 menjadi SN1 dengan mengubah pelarutnya dari 95% aseton-5% air (relatif tidak-polar) menjadi 50% aseton-50% air (lebih polar, dan pelarut peng-ion yanglebih baik). Kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi. 
Berikut ini ada beberapa petunjuk yang digunakan untuk mengetahui apakah suatu nukleofil adalah kuat atau lemah. 
1. Ion nukleofil bersifat nukleofil. Anion adalah pemberi elektron yang lebih baik daripada molekul netralnya. Jadi 





3. Pada periode yang sama, unsur yang lebih elektronegatif cenderung merupakan nukleofil lebih lemah (karena ia lebih kuat memegang elektron). Jadi 


N: , yang bereaksi adalah karbon, karena sifat nukleofilnya lebih kuat. ยบKarena C dan N berada dalam periode yang sama, tidak mengherankan jika pada ion -:C


Permasalahan :
Kita ketahui pada Mekanisme reaksi SN1 dan Mekanisme reaksi SN2,yaitu produk SN1 berupa rasemat dan produk SN2 berupa produk inversi (terbalik) yang dikenal sebagai inversi.Nah,apa yang menyebabkan terjadinya fenomena “inversi” ini ! Tolong bantuannya teman-teman.Trimakasih J